Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
JMIR Public Health Surveill ; 9: e40036, 2023 01 24.
Article in English | MEDLINE | ID: covidwho-2215067

ABSTRACT

BACKGROUND: Telehealth has been widely used for new case detection and telemonitoring during the COVID-19 pandemic. It safely provides access to health care services and expands assistance to remote, rural areas and underserved communities in situations of shortage of specialized health professionals. Qualified data are systematically collected by health care workers containing information on suspected cases and can be used as a proxy of disease spread for surveillance purposes. However, the use of this approach for syndromic surveillance has yet to be explored. Besides, the mathematical modeling of epidemics is a well-established field that has been successfully used for tracking the spread of SARS-CoV-2 infection, supporting the decision-making process on diverse aspects of public health response to the COVID-19 pandemic. The response of the current models depends on the quality of input data, particularly the transmission rate, initial conditions, and other parameters present in compartmental models. Telehealth systems may feed numerical models developed to model virus spread in a specific region. OBJECTIVE: Herein, we evaluated whether a high-quality data set obtained from a state-based telehealth service could be used to forecast the geographical spread of new cases of COVID-19 and to feed computational models of disease spread. METHODS: We analyzed structured data obtained from a statewide toll-free telehealth service during 4 months following the first notification of COVID-19 in the Bahia state, Brazil. Structured data were collected during teletriage by a health team of medical students supervised by physicians. Data were registered in a responsive web application for planning and surveillance purposes. The data set was designed to quickly identify users, city, residence neighborhood, date, sex, age, and COVID-19-like symptoms. We performed a temporal-spatial comparison of calls reporting COVID-19-like symptoms and notification of COVID-19 cases. The number of calls was used as a proxy of exposed individuals to feed a mathematical model called "susceptible, exposed, infected, recovered, deceased." RESULTS: For 181 (43%) out of 417 municipalities of Bahia, the first call to the telehealth service reporting COVID-19-like symptoms preceded the first notification of the disease. The calls preceded, on average, 30 days of the notification of COVID-19 in the municipalities of the state of Bahia, Brazil. Additionally, data obtained by the telehealth service were used to effectively reproduce the spread of COVID-19 in Salvador, the capital of the state, using the "susceptible, exposed, infected, recovered, deceased" model to simulate the spatiotemporal spread of the disease. CONCLUSIONS: Data from telehealth services confer high effectiveness in anticipating new waves of COVID-19 and may help understand the epidemic dynamics.


Subject(s)
COVID-19 , Telemedicine , Humans , COVID-19/epidemiology , Brazil/epidemiology , Sentinel Surveillance , SARS-CoV-2 , Pandemics
2.
Comput Methods Appl Mech Eng ; 401: 115541, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-2031208

ABSTRACT

The outbreak of COVID-19, beginning in 2019 and continuing through the time of writing, has led to renewed interest in the mathematical modeling of infectious disease. Recent works have focused on partial differential equation (PDE) models, particularly reaction-diffusion models, able to describe the progression of an epidemic in both space and time. These studies have shown generally promising results in describing and predicting COVID-19 progression. However, people often travel long distances in short periods of time, leading to nonlocal transmission of the disease. Such contagion dynamics are not well-represented by diffusion alone. In contrast, ordinary differential equation (ODE) models may easily account for this behavior by considering disparate regions as nodes in a network, with the edges defining nonlocal transmission. In this work, we attempt to combine these modeling paradigms via the introduction of a network structure within a reaction-diffusion PDE system. This is achieved through the definition of a population-transfer operator, which couples disjoint and potentially distant geographic regions, facilitating nonlocal population movement between them. We provide analytical results demonstrating that this operator does not disrupt the physical consistency or mathematical well-posedness of the system, and verify these results through numerical experiments. We then use this technique to simulate the COVID-19 epidemic in the Brazilian region of Rio de Janeiro, showcasing its ability to capture important nonlocal behaviors, while maintaining the advantages of a reaction-diffusion model for describing local dynamics.

3.
Eng Comput ; 38(5): 4241-4268, 2022.
Article in English | MEDLINE | ID: covidwho-1941571

ABSTRACT

Dynamic mode decomposition (DMD) is a powerful data-driven method used to extract spatio-temporal coherent structures that dictate a given dynamical system. The method consists of stacking collected temporal snapshots into a matrix and mapping the nonlinear dynamics using a linear operator. The classical procedure considers that snapshots possess the same dimensionality for all the observable data. However, this often does not occur in numerical simulations with adaptive mesh refinement/coarsening schemes (AMR/C). This paper proposes a strategy to enable DMD to extract features from observations with different mesh topologies and dimensions, such as those found in AMR/C simulations. For this purpose, the adaptive snapshots are projected onto the same reference function space, enabling the use of snapshot-based methods such as DMD. The present strategy is applied to challenging AMR/C simulations: a continuous diffusion-reaction epidemiological model for COVID-19, a density-driven gravity current simulation, and a bubble rising problem. We also evaluate the DMD efficiency to reconstruct the dynamics and some relevant quantities of interest. In particular, for the SEIRD model and the bubble rising problem, we evaluate DMD's ability to extrapolate in time (short-time future estimates).

4.
Arch Comput Methods Eng ; 28(6): 4205-4223, 2021.
Article in English | MEDLINE | ID: covidwho-1681744

ABSTRACT

The outbreak of COVID-19 in 2020 has led to a surge in interest in the mathematical modeling of infectious diseases. Such models are usually defined as compartmental models, in which the population under study is divided into compartments based on qualitative characteristics, with different assumptions about the nature and rate of transfer across compartments. Though most commonly formulated as ordinary differential equation models, in which the compartments depend only on time, recent works have also focused on partial differential equation (PDE) models, incorporating the variation of an epidemic in space. Such research on PDE models within a Susceptible, Infected, Exposed, Recovered, and Deceased framework has led to promising results in reproducing COVID-19 contagion dynamics. In this paper, we assess the robustness of this modeling framework by considering different geometries over more extended periods than in other similar studies. We first validate our code by reproducing previously shown results for Lombardy, Italy. We then focus on the U.S. state of Georgia and on the Brazilian state of Rio de Janeiro, one of the most impacted areas in the world. Our results show good agreement with real-world epidemiological data in both time and space for all regions across major areas and across three different continents, suggesting that the modeling approach is both valid and robust.

5.
Computer Methods in Applied Mechanics and Engineering ; 391:114600, 2022.
Article in English | ScienceDirect | ID: covidwho-1664805

ABSTRACT

Dynamic Mode Decomposition (DMD) is an unsupervised machine learning method that has attracted considerable attention in recent years owing to its equation-free structure, ability to easily identify coherent spatio-temporal structures in data, and effectiveness in providing reasonably accurate predictions for certain problems, particularly over short-to-medium time frames. Despite these successes, the application of DMD to certain problems featuring highly nonlinear transient dynamics remains challenging. In such cases, DMD may not only fail to provide acceptable predictions but may indeed fail to recreate the data in which it was trained, restricting its application to diagnostic purposes (i.e., feature identification and extraction). For many such problems in the biological and physical sciences, the structure of the system obeys a compartmental framework, in which the transfer of mass, energy, or some other quantity of interest within the system moves across states. In these cases, the behavior of the system may not be accurately recreated by applying DMD to a single quantity within the system, as proper knowledge of the system dynamics, even for a single compartment, requires that the behavior of other compartments is taken into account in the DMD process. In the present work, we demonstrate, theoretically and numerically, that, when performing DMD on a fully coupled PDE system with compartmental structure, one may recover useful predictive behavior, even when DMD performs poorly when acting compartment-wise. We also establish that important physical quantities, such as mass conservation, are maintained in the coupled-DMD extrapolation. The mathematical and numerical analysis suggests that DMD, properly applied, may be a powerful tool for this common class of problems In particular, we show interesting numerical applications to a continuous delayed-SIRD model for Covid-19, and to a problem from additive manufacturing considering a nonlinear temperature field and the resulting change of material phase from powder, liquid, and solid states.

6.
Comput Mech ; 67(4): 1177-1199, 2021.
Article in English | MEDLINE | ID: covidwho-1111275

ABSTRACT

The outbreak of COVID-19 in 2020 has led to a surge in the interest in the mathematical modeling of infectious diseases. Disease transmission may be modeled as compartmental models, in which the population under study is divided into compartments and has assumptions about the nature and time rate of transfer from one compartment to another. Usually, they are composed of a system of ordinary differential equations in time. A class of such models considers the Susceptible, Exposed, Infected, Recovered, and Deceased populations, the SEIRD model. However, these models do not always account for the movement of individuals from one region to another. In this work, we extend the formulation of SEIRD compartmental models to diffusion-reaction systems of partial differential equations to capture the continuous spatio-temporal dynamics of COVID-19. Since the virus spread is not only through diffusion, we introduce a source term to the equation system, representing exposed people who return from travel. We also add the possibility of anisotropic non-homogeneous diffusion. We implement the whole model in libMesh, an open finite element library that provides a framework for multiphysics, considering adaptive mesh refinement and coarsening. Therefore, the model can represent several spatial scales, adapting the resolution to the disease dynamics. We verify our model with standard SEIRD models and show several examples highlighting the present model's new capabilities.

SELECTION OF CITATIONS
SEARCH DETAIL